
Tutorial WALKTHROUGH

44 Educator’s Edition raspberrypi.org/education

he lights sliced through the mist as the
rhythms moved the crowd, the atmosphere
ripe with a heady mix of synths. However,

something wasn’t quite right. Projected in bright
colours above the performer was futuristic text,
moving, dancing, ľashing. This wasn’t fancy visuals>
it was merely a projection of the free live coding
system Sonic Pi. The musician wasn’t spinning discs
Ğ she was writing, editing, and evaluating code. Live.
This is live coding.

It may sound like a far-fetched scene from a
futuristic music festival, but is actually a description
of a pupil performing at their primary school
assembly. Coding music like this is a growing trend
and is often described as live coding. However, this
approach to manipulating code isn’t just useful for
performance> it’s also a fabulous way of engaging a
new generation of coders in the classroom.

Engaging a new generation of coders
Across the educational landscape, it’s becoming
clear that teaching programming is an increasingly
important aspect of our curriculum. What is
not obvious, however, is exactly how we go
about engaging students in order to effectively
teach the core fundamentals of programming.
One approach to solving this problem has been
to ask expert programmers what excited them
when they started learning. This has yielded
responses ranging from sorting algorithms to binary
arithmetic. Whilst these may be deeply interesting
and engaging topics for computer scientists, it’s

not clear that they are effective topics for exciting a
broad and diverse range of students in introductory
computing. This is especially significant considering
that most students will not embark in a career in
programming in either industry or academia.

Sonic Pi takes a different approach. It turns code
into a powerful new kind of musical instrument with
a focus on fast feedback and iterative learning. It
enables students to code the kinds of music they’re
typically used to listening to. If this claim sounds a
little ambitious, take a look at this quotation from the
Rolling Stone magazine covering a recent Sonic Pi
performance at Moogfest USA:

ģ^The set` Ğ which sounded like Electric CafË-era
Nraftwerk, a little bit of Aphex Twin skitter and some
Eighties electro Ğ was constructed through typing
and deleting lines of code. The shadowy GM sets,
knob-tweaking noise and fogbank ambient of many
Poogfest performers was completely demystified
and turned into simple numbers and letters that you
could see in action. Gubbed Ġthe live coding synth for
everyone’, it truly seemed less like a performance and
more like an invitation to code your own adventure.”

Powerful yet simple
Of course, there’s very limited educational value
in a system that’s powerful yet incredibly diĿcult
to learn. However, Sonic Pi was conceived and
built within classrooms in close collaboration with
teachers and has benefited from many design
iterations based on hundreds of hours of student
observation. Simplicity has even been baked into

T

LIVE CODING
EDUCATION

Join Sonic Pi creator and live performer Sam Aaron as he introduces us
to the joys of live-coding music with Sonic Pi…

SAM AARON
Sam is the creator of Sonic Pi. By day he’s

a research associate at the University of

Cambridge Computer Laboratory; by night

he writes code for people to dance to.

sonic-pi.net

 &&

> A PC, Mac or

Raspberry Pi

> Sonic Pi (free)

> Speakers or

headphones

> A creative

mindset

You’ll
 Need

https://www.raspberrypi.org/education/
http://sonic-pi.net

Tutorial

45Educator’s Editionraspberrypi.org/education

Above Sonic Pi
creator Sam Aaron
performing at
Moogfest 2016

SONIC PI LIVE CODING

the core design philosophy by only allowing features
that may be easily understood by and taught to a
ten-year-old child.

For example, in order to get started, you only
need to learn two extremely simple commands:
play, which allows you to play different notes,
and sleep, which enables you to choose how long
to wait before playing the next note. Once you’ve
mastered play and sleep, the next command to
learn is sample, which gives you the ability to play
any pre-recorded sound. Sonic Pi includes a large
number of built-in recordings to use, such as drums,
guitars, and atmospheric noises. However, the real
fun starts when you record your own sounds to play
back and manipulate. Finally, you also have access
to a full set of professional studio effects, such as
echo and reverb, to manipulate your sounds. For
instance, playing a sample of a guitar with reverb
is as simple as:

with_fx :reverb do
 sample :guit_harmonics
end

Explore the full computing curriculum
Considerable care and attention has been placed
to ensure that Sonic Pi allows educators to deliver
all of the core concepts in the UK’s new computing
curriculum. It is an ideal follow-on language to
Scratch due to its simple block-like, text-based
syntactic structure. It is already seeing extensive use

worldwide in all levels of education, from primary
through to university. There are even primary schools
which encourage their pupils to give performances
with Sonic Pi during assemblies.

There is already a lot of support for educators who
wish to use Sonic Pi in the classroom. You can easily

use Sonic Pi to teach basic computing concepts such
as sequencing, iteration, selection, functions, data
structures, and algorithms. However, rather than
teaching these ideas in a distant, abstract way, you
are invited to deliver them using a simple, engaging
musical narrative which gives the constructs extra
meaning and motivation. For example, instead of
sequencing, you could teach melodies> instead of
iteration, repeating rhythms> instead of lists, bass
lines or riffs. This is possible because each and every
musical idea in Sonic Pi is immediately represented
by one or more core computer science techniques.
You can even go much further than the basic
curriculum and explore concurrency, determinism,
and even live coding. Before we dive into these
advanced topics, let’s take a quick look at how Sonic
Pi brings new meaning to the basic concepts of
sequencing, iteration, and selection.

Language
>RUBY

You can easily use Sonic Pi
to teach a range of basic
computing concepts

https://www.raspberrypi.org/education/

Tutorial WALKTHROUGH

46 Educator’s Edition raspberrypi.org/education

Sequencing melodies
From the outset, Sonic Pi encourages the learner to
code sequences of instructions. This is because the
most simple programs consist of sequencing calls to
play and sleep to create simple melodies:

play 70
sleep 1
play 75
sleep 0.5
play 82

What’s exciting here from a musical perspective
is that by sequencing play and sleep like this, you
have access to most of Western music. In other
words, with just two commands you can recreate
any known melody or rhythm, and of course you’re
entirely free to compose your own.

Iterating rhythms
Iteration is also very simple to represent and work
with. For instance, imagine we wish to play a bass
drum five times followed by a cymbal three times:

5.times do
 sample :bd_haus
 sleep 0.5
end

3.times do
 sample :drum_cymbal_open
 sleep 1
end

In the example above, all the code between the
first do and end lines is repeated five times, and the
code within the second block is repeated three times.
We therefore play the :bd_haus sample and wait for
half a second repeatedly five times, before finishing
by playing the :drum_cymbal_open sample and
waiting for one second repeatedly three times.

Selecting sounds
Selection is also easy to represent. Let’s use some
randomisation to repeatedly choose whether to play
a cowbell or a snare drum with a one in two chance of
playing either percussion instrument:

loop do
 if one_in 2
 sample :drum_cowbell
 else
 sample :drum_snare_hard
 end
 sleep 0.125
end

In this example we use an infinite loop to
repeatedly call the function one_in with the
parameter 2. This will return true or false, with a
50% chance of either. We then use this value to select
one of two possible samples to play. If one_in 2
returns true we hear a cowbell, otherwise we hear a
snare drum. We then wait for 0.125 seconds before
repeating. Executing this code creates an interesting
non-repeating rhythm and is the basic building block
of a probabilistic drum sequencer.

A brief introduction to live coding
In order to get a taste of what Sonic Pi can do, let’s
now dive straight into the deep end and take a look at
one of the most exciting aspects on offer: live coding.
This is a new style of programming that provides
many new learning opportunities in the classroom due
to its immersive nature and incredibly fast feedback
cycle. The basic idea is simple: in addition to the
traditional start/stop model of programming, we can
also continually tweak and modify the program as it
runs. This allows us to rapidly explore the effects of
small tweaks to the program, which both encourages
tinkering and increases engagement. For example,
once you have mastered the live coding workľow, it
is easy to get into a ľow-like state for long periods of
time, modifying and remodifying the code.

The live loop
The key to live coding is mastering Sonic Pi’s unique
programming construct, the live_loop. At a quick
glance, it looks no more complicated than a Ġforever’
block in Scratch. Let’s look at one:

live_loop :beats do
 sample :bd_haus
 sleep 0.5
end

There are four core ingredients to a live_loop.
The first is its name. Our live_loop above is called
:beats. You’re free to call yours anything you
want. Go crazy. Be creative. I often use names that

Below It’s amazing what interesting sounds
can be created with just a few lines of code

https://www.raspberrypi.org/education/
Rectangle

Stamp

Tutorial

47Educator’s Editionraspberrypi.org/education

SONIC PI LIVE CODING

communicate something about the music I am
making to the audience. The second ingredient is
the do word, which marks where the live_loop
starts. The third is the end word, which marks
where the live_loop finishes, and finally there is
the body of the live_loop, which describes what
the loop is going to repeat Ğ that’s the bit between
the do and end. In this case we’re repeatedly playing
a bass drum sample and waiting for half a second.
This produces a nice regular bass beat. Jo ahead,
copy it into an empty Sonic Pi buffer and hit Run.
Boom, boom, boom!

Redefining on-the-fly
OK, so what’s so special about the live_loop? So far
it just seems like a glorified loop! Well, the beauty of
live_loops is that you can redefine them on-the-ľy.
This means that whilst they’re still running, you can
change what they do. This is the secret to live coding
with Sonic Pi. Let’s have a play:

live_loop :choral_drone do
 sample :ambi_choir, rate: 0.4
 sleep 1
end

Type in the code above and then press the Run
button or hit ALT+R. You’re now listening to some
gorgeous choir sounds. Now, whilst it’s still playing,
change the rate from 0.4 to 0.38. Gon’t hit Stop but
instead hit Run again. Whoa$ Gid you hear the choir
change note? Change it back up to 0.4 to return it
to how it was. Now, drop it to 0.2, down to 0.19,
and then back up to 0.4. See how changing just one
parameter on the ľy can give you real control of the
music? Now have a go at playing around with the
rate yourself. Choose your own values. Try negative
numbers, really small numbers, and large numbers.
Most importantly, have fun!

Sleeping is important
One of the core lessons about live_loops is that they
need rest. Consider the following live_loop:

live_loop :infinite_impossibilities do
 sample :ambi_choir
end

If you try running this code, you’ll immediately
see Sonic Pi complaining that the live_loop
did not sleep. This is a safety system kicking in$
Take a moment to think about what this code is asking
the computer to do. That’s right, it’s asking the
computer to play an infinite amount of choir samples
in zero time. Without the safety system, the poor
computer will try to do this and crash and burn in the
process. So remember, your live_loops must always
contain a sleep.

Combining sounds with concurrency
Music is full of things happening at the same time.
Grums at the same time as bass at the same time as
vocals at the same time as guitars…. In computing we
call this concurrency, and Sonic Pi provides us with
an amazingly simple way of writing concurrent code.
Must use more than one live_loop!

live_loop :beats do
 sample :bd_tek
 with_fx :echo, phase: 0.125, mix: 0.4 do
 sample :drum_cymbal_soft, sustain: 0, release: 0.1
 sleep 0.5
 end
end

live_loop :bass do
 use_synth :tb303
 synth :tb303, note: :e1, release: 4, cutoff: 120, cutoff_attack: 1
 sleep 4
end

Above Sonic Pi can
be used alongside
traditional musical
instruments

Here, we have two live_loops: one looping quickly
making beats, and another looping slowly to make a
crazy bass sound.

One of the interesting things about using multiple
live_loops is that they each manage their own
time. This means it’s really easy to create complex
polyrhythmical structures and make very interesting
music with only a few lines of code.

Use Sonic Pi in your classroom today
This ends our whistle-stop tour of live-coding
music with Sonic Pi. If you are excited about this
new approach to engaging students with computing,
you can download the app from sonic-pi.net. It
is completely free and cross-platform, working
identically on Windows, Mac, and the Raspberry Pi.
It comes with a complete built-in tutorial which
assumes you know nothing about either code or
music. There is also an accompanying (free) book
published by The MagPi (magpi.cc/1VGIOux) which
includes many ideas and invitations to experiment
and learn. There is also friendly community of
teachers, programmers and artists sharing work,
ideas and questions: https://in-thread.sonic-pi.net.

https://www.raspberrypi.org/education/
http://magpi.cc/1VGIOux

